Does Genetics Impact Survival?

Tom D. Byram

Western Gulf Forest Tree Improvement Program t-byram@tamu.edu

Loblolly Pine Range

AC vs. Local TX Lob Central Texas

Yes, but

- Multiple factors and their complex interactions
 - Seedling quality
 - Lifting and handling
 - Nursery conditions
 - Site preparation
 - Planting
 - Release
 - Weather

The cost of getting it wrong:

- Too many trees
 - Wasted seed
 - \$\$\$ nursery costs
 - \$\$\$ planting costs
 - Lost growth / Pre-commercial thinning
- Too few trees
 - Wasted space with less than optimal growth
 - Lower product value
 - \$\$\$ replants

And the stakes are going up ...

- Ultra low planting densities / optimize harvest values
 - Expensive site prep and release treatments
 - Less room for error with the tpa
- Weather cycles
- Family blocks (and varietals) may be less buffered

So do we test for survival? Well sort of but not really.

- Initial
 - Seedling quality, lifting, handling, site preparation, planting, and genetics
- Early
 - First year survival
- Mid-rotation
 - Competition
 - Disease

Progeny test conditions don't reflect operations!

- Containerized seedlings
- Maxed out site preparation

Progeny test conditions don't reflect operations!

- Containerized seedlings
- Maxed out site preparation

But we still see differences!!!

Loblolly Pine

- 17,266 planting by family combinations
- Plantings with significant family differences average 90% survival

Distribution of tests with differences

Range of family performances

Distribution of Family Survival

Distribution of Family Survival

Repeatability – Genotype by Environment Interaction

η² - % of total variation explained by pairs of estimates moving together

```
■ 0.59 all tests
```

- 0.56 tests with > 90% survival
- 0.63 tests with < 90% survival
- 0.76 volume breeding value

Conclusions

- There are differences
- Most of the time they don't mater
- Poor survival is selected against

But

- Progeny tests aren't operational
- They are not family blocks

Special Conditions Testing the Deployment Population

- Wet Sites
- Dry Sites
- Saline Sites

Wet Sites 5 Best and 5 Poorest Families

Wet Sites 5 Best and 5 Poorest Families

Dry Sites 110 Families

Dry Sites

Dry Sites How do you use the data?

Diboll-Colita Saline Soils

Conclusions

- Survival doesn't always work the way we would expect
- Performance on good sites can be misleading
- First year survival may not be enough

More Conclusions

- Can we ignore survival?
 - Low planting densities
 - Block plantings
 - Weather cycles
- What do we do about it?
 - Select for good survival
 - Monitor operational plantings
 - Test for specific sites